Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Negl Trop Dis ; 18(3): e0011862, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38527081

RESUMEN

African populations of the mosquito Aedes aegypti are usually considered less susceptible to infection by human-pathogenic flaviviruses than globally invasive populations found outside Africa. Although this contrast has been well documented for Zika virus (ZIKV), it is unclear to what extent it is true for dengue virus (DENV), the most prevalent flavivirus of humans. Addressing this question is complicated by substantial genetic diversity among DENV strains, most notably in the form of four genetic types (DENV1 to DENV4), that can lead to genetically specific interactions with mosquito populations. Here, we carried out a survey of DENV susceptibility using a panel of seven field-derived Ae. aegypti colonies from across the African range of the species and a colony from Guadeloupe, French West Indies as non-African reference. We found considerable variation in the ability of African Ae. aegypti populations to acquire and replicate a panel of six DENV strains spanning the four DENV types. Although African Ae. aegypti populations were generally less susceptible than the reference non-African population from Guadeloupe, in several instances some African populations were equally or more susceptible than the Guadeloupe population. Moreover, the relative level of susceptibility between African mosquito populations depended on the DENV strain, indicating genetically specific interactions. We conclude that unlike ZIKV susceptibility, there is no clear-cut dichotomy in DENV susceptibility between African and non-African Ae. aegypti. DENV susceptibility of African Ae. aegypti populations is highly heterogeneous and largely governed by the specific pairing of mosquito population and DENV strain.


Asunto(s)
Aedes , Virus del Dengue , Dengue , Flavivirus , Infección por el Virus Zika , Virus Zika , Animales , Humanos , Virus del Dengue/genética , Virus Zika/genética , Aedes/genética , Mosquitos Vectores/genética , Dengue/epidemiología
2.
PLoS Negl Trop Dis ; 17(8): e0011501, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37585443

RESUMEN

BACKGROUND: Since its first record in urban areas of Central-Africa in the 2000s, the invasive mosquito, Aedes albopictus, has spread throughout the region, including in remote villages in forested areas, causing outbreaks of Aedes-borne diseases, such as dengue and chikungunya. Such invasion might enhance Ae. albopictus interactions with wild animals in forest ecosystems and favor the spillover of zoonotic arboviruses to humans. The aim of this study was to monitor Ae. albopictus spread in the wildlife reserve of La Lopé National Park (Gabon), and evaluate the magnitude of the rainforest ecosystem colonization. METHODOLOGY: From 2014 to 2018, we used ovitraps, larval surveys, BG-Sentinel traps, and human landing catches along an anthropization gradient from La Lopé village to the natural forest in the Park. CONCLUSIONS: We detected Ae. albopictus in gallery forest up to 15 km away from La Lopé village. However, Ae. albopictus was significantly more abundant at anthropogenic sites than in less anthropized areas. The number of eggs laid by Ae. albopictus decreased progressively with the distance from the forest fringe up to 200m inside the forest. Our results suggested that in forest ecosystems, high Ae. albopictus density is mainly observed at interfaces between anthropized and natural forested environments. Additionally, our data suggested that Ae. albopictus may act as a bridge vector of zoonotic pathogens between wild and anthropogenic compartments.


Asunto(s)
Aedes , Salud Única , Animales , Humanos , Gabón , Ecosistema , Mosquitos Vectores , Bosques , Animales Salvajes
3.
Bull Entomol Res ; 113(4): 456-468, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37183666

RESUMEN

Mosquito surveillance programmes are essential to assess the risks of local vector-borne disease outbreaks as well as for early detection of mosquito invasion events. Surveys are usually performed with traditional sampling tools (i.e., ovitraps and dipping method for immature stages or light or decoy traps for adults). Over the past decade, numerous studies have highlighted that environmental DNA (eDNA) sampling can enhance invertebrate species detection and provide community composition metrics. However, the usefulness of eDNA for detection of mosquito species has, to date, been largely neglected. Here, we sampled water from potential larval breeding sites along a gradient of anthropogenic perturbations, from the core of an oil palm plantation to the rainforest on São Tomé Island (Gulf of Guinea, Africa). We showed that (i) species of mosquitoes could be detected via metabarcoding mostly when larvae were visible, (ii) larvae species richness was greater using eDNA than visual identification and (iii) new mosquito species were also detected by the eDNA approach. We provide a critical discussion of the pros and cons of eDNA metabarcoding for monitoring mosquito species diversity and recommendations for future research directions that could facilitate the adoption of eDNA as a tool for assessing insect vector communities.


Asunto(s)
Culicidae , ADN Ambiental , Animales , Culicidae/genética , Código de Barras del ADN Taxonómico/métodos , Mosquitos Vectores , Larva/genética , Biodiversidad
4.
bioRxiv ; 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38168387

RESUMEN

African populations of the mosquito Aedes aegypti are usually considered less susceptible to infection by human-pathogenic flaviviruses than globally invasive populations found outside Africa. Although this contrast has been well documented for Zika virus (ZIKV), it is unclear to what extent it is true for dengue virus (DENV), the most prevalent flavivirus of humans. Addressing this question is complicated by substantial genetic diversity among DENV strains, most notably in the form of four genetic types (DENV1 to DENV4), that can lead to genetically specific interactions with mosquito populations. Here, we carried out a continent-wide survey of DENV susceptibility using a panel of field-derived Ae. aegypti colonies from across the African range of the species and a colony from Guadeloupe, French West Indies as non-African reference. We found considerable variation in the ability of African Ae. aegypti populations to acquire and replicate a panel of six DENV strains spanning the four DENV types. Although African Ae. aegypti populations were generally less susceptible than the reference non-African population from Guadeloupe, in several instances some African populations were equally or more susceptible than the Guadeloupe population. Moreover, the relative level of susceptibility between African mosquito populations depended on the DENV strain, indicating genetically specific interactions. We conclude that unlike ZIKV susceptibility, there is no clear-cut dichotomy in DENV susceptibility between African and non-African Ae. aegypti. DENV susceptibility of African Ae. aegypti populations is highly heterogeneous and largely governed by the specific pairing of mosquito population and DENV strain.

5.
Nat Commun ; 13(1): 4490, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35918360

RESUMEN

First identified in 1947, Zika virus took roughly 70 years to cause a pandemic unusually associated with virus-induced brain damage in newborns. Zika virus is transmitted by mosquitoes, mainly Aedes aegypti, and secondarily, Aedes albopictus, both colonizing a large strip encompassing tropical and temperate regions. As part of the international project ZIKAlliance initiated in 2016, 50 mosquito populations from six species collected in 12 countries were experimentally infected with different Zika viruses. Here, we show that Ae. aegypti is mainly responsible for Zika virus transmission having the highest susceptibility to viral infections. Other species play a secondary role in transmission while Culex mosquitoes are largely non-susceptible. Zika strain is expected to significantly modulate transmission efficiency with African strains being more likely to cause an outbreak. As the distribution of Ae. aegypti will doubtless expand with climate change and without new marketed vaccines, all the ingredients are in place to relive a new pandemic of Zika.


Asunto(s)
Aedes , Infección por el Virus Zika , Virus Zika , Animales , Brotes de Enfermedades , Humanos , Recién Nacido , Mosquitos Vectores
6.
Mol Ecol Resour ; 22(8): 2915-2927, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35730337

RESUMEN

Many emerging infectious diseases originate from wild animals, so there is a profound need for surveillance and monitoring of their pathogens. However, the practical difficulty of sample acquisition from wild animals tends to limit the feasibility and effectiveness of such surveys. Xenosurveillance, using blood-feeding invertebrates to obtain tissue samples from wild animals and then detect their pathogens, is a promising method to do so. Here, we describe the use of tsetse fly blood meals to determine (directly through molecular diagnostic and indirectly through serology), the diversity of circulating blood-borne pathogens (including bacteria, viruses and protozoa) in a natural mammalian community of Tanzania. Molecular analyses of captured tsetse flies (182 pools of flies totalizing 1728 flies) revealed that the blood meals obtained came from 18 different vertebrate species including 16 non-human mammals, representing approximately 25% of the large mammal species present in the study area. Molecular diagnostic demonstrated the presence of different protozoa parasites and bacteria of medical and/or veterinary interest. None of the six virus species searched for by molecular methods were detected but an ELISA test detected antibodies against African swine fever virus among warthogs, indicating that the virus had been circulating in the area. Sampling of blood-feeding insects represents an efficient and practical approach to tracking a diversity of pathogens from multiple mammalian species, directly through molecular diagnostic or indirectly through serology, which could readily expand and enhance our understanding of the ecology and evolution of infectious agents and their interactions with their hosts in wild animal communities.


Asunto(s)
Virus de la Fiebre Porcina Africana , Dípteros , Moscas Tse-Tse , Virus , Animales , Animales Salvajes , Patógenos Transmitidos por la Sangre , Mamíferos , Comidas , Porcinos
7.
Emerg Microbes Infect ; 10(1): 1244-1253, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34085899

RESUMEN

ABSTRACTThe two main Zika virus (ZIKV) vectors, Aedes albopictus and Aedes aegypti (invasive and native species, respectively), are present in Gabon (Central Africa). The aim of this study was to determine the entomological ZIKV risk associated with these mosquito species in Gabon by evaluating their vector competence for an African (i.e. representative of the endemic strains circulating in sub-Saharan Africa) and two Asian (i.e. representatives of exogenous epidemic strains that could be introduced) ZIKV strains. The transmission efficiency of one Ae. aegypti and two Ae. albopictus field-collected populations from Libreville and Franceville was assayed at day 7, 14 and 21 after experimental oral infection. The two mosquito species could transmit all three ZIKV strains already at day 7 post-infection, but transmission efficiency was higher for the African strain than the non-African strains (>60% versus <14%; incubation period of 14-21 days). The two mosquito species exhibited comparable vector competence for ZIKV, although the amount of viral particles (African strain) in saliva was significantly higher in Ae. albopictus than Ae. aegypti at day 14 post-infection. These findings suggest that overall, ZIKV risk in Gabon is mainly related to virus strains that circulate endemically across sub-Saharan Africa, although the transmission of non-African strains remain possible in case of introduction. Due to its high infestation indexes and ecological/geographical ranges, this risk appears mainly associated with Ae. albopictus. Vector surveillance and control methods against this invasive mosquito must be strengthened in the region to limit the risk of future outbreaks.


Asunto(s)
Aedes/virología , Mosquitos Vectores/virología , Infección por el Virus Zika/transmisión , Virus Zika/fisiología , África del Sur del Sahara , Animales , Asia , Gabón , Saliva/virología , Carga Viral , Infección por el Virus Zika/virología
8.
Science ; 370(6519): 991-996, 2020 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-33214283

RESUMEN

The drivers and patterns of zoonotic virus emergence in the human population are poorly understood. The mosquito Aedes aegypti is a major arbovirus vector native to Africa that invaded most of the world's tropical belt over the past four centuries, after the evolution of a "domestic" form that specialized in biting humans and breeding in water storage containers. Here, we show that human specialization and subsequent spread of A. aegypti out of Africa were accompanied by an increase in its intrinsic ability to acquire and transmit the emerging human pathogen Zika virus. Thus, the recent evolution and global expansion of A. aegypti promoted arbovirus emergence not solely through increased vector-host contact but also as a result of enhanced vector susceptibility.


Asunto(s)
Aedes/virología , Interacciones Microbiota-Huesped/genética , Mosquitos Vectores/virología , Infección por el Virus Zika/transmisión , Virus Zika/fisiología , Aedes/genética , Animales , Humanos , Ratones , Ratones Endogámicos C57BL , Mosquitos Vectores/genética
9.
Parasit Vectors ; 13(1): 460, 2020 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-32907625

RESUMEN

BACKGROUND: Mosquitoes are the deadliest animals in the world. Their ability to carry and spread diseases to humans causes millions of deaths every year. Due to the lack of efficient vaccines, the control of mosquito-borne diseases primarily relies on the management of the vector. Traditional control methods are insufficient to control mosquito populations. The sterile insect technique (SIT) is an additional control method that can be combined with other control tactics to suppress specific mosquito populations. The SIT requires the mass-rearing and release of sterile males with the aim to induce sterility in the wild female population. Samples collected from the environment for laboratory colonization, as well as the released males, should be free from mosquito-borne viruses (MBV). Therefore, efficient detection methods with defined detection limits for MBV are required. Although a one-step reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) method was developed to detect arboviruses in human and mosquito samples, its detection limit in mosquito samples has yet to be defined. METHODS: We evaluated the detection sensitivity of one step RT-qPCR for targeted arboviruses in large mosquito pools, using pools of non-infected mosquitoes of various sizes (165, 320 and 1600 mosquitoes) containing one infected mosquito body with defined virus titers of chikungunya virus (CHIKV), usutu virus (USUV), West Nile virus (WNV) and Zika virus (ZIKV). RESULTS: CHIK, USUV, ZIKV, and WNV virus were detected in all tested pools using the RT-qPCR assay. Moreover, in the largest mosquito pools (1600 mosquitoes), RT-qPCR was able to detect the targeted viruses using different total RNA quantities (10, 1 and 0.1 ng per reaction) as a template. Correlating the virus titer with the total RNA quantity allowed the prediction of the maximum number of mosquitoes per pool in which the RT-qPCR can theoretically detect the virus infection. CONCLUSIONS: Mosquito-borne viruses can be reliably detected by RT-qPCR assay in pools of mosquitoes exceeding 1000 specimens. This will represent an important step to expand pathogen-free colonies for mass-rearing sterile males for programmes that have a SIT component by reducing the time and the manpower needed to conduct this quality control process.


Asunto(s)
Arbovirus , Culicidae/virología , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Animales , Arbovirus/genética , Arbovirus/aislamiento & purificación , Virus Chikungunya/genética , Virus Chikungunya/aislamiento & purificación , Reservorios de Enfermedades/virología , Vectores de Enfermedades , Flavivirus/genética , Flavivirus/aislamiento & purificación , Mosquitos Vectores/virología , Enfermedades Transmitidas por Vectores/transmisión , Enfermedades Transmitidas por Vectores/virología , Virosis/transmisión , Virus del Nilo Occidental/genética , Virus del Nilo Occidental/aislamiento & purificación , Virus Zika/genética , Virus Zika/aislamiento & purificación
10.
PLoS Genet ; 16(5): e1008794, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32463828

RESUMEN

Although specific interactions between host and pathogen genotypes have been well documented in invertebrates, the identification of host genes involved in discriminating pathogen genotypes remains a challenge. In the mosquito Aedes aegypti, the main dengue virus (DENV) vector worldwide, statistical associations between host genetic markers and DENV types or strains were previously detected, but the host genes underlying this genetic specificity have not been identified. In particular, it is unknown whether DENV type- or strain-specific resistance relies on allelic variants of the same genes or on distinct gene sets. Here, we investigated the genetic architecture of DENV resistance in a population of Ae. aegypti from Bakoumba, Gabon, which displays a stronger resistance phenotype to DENV type 1 (DENV-1) than to DENV type 3 (DENV-3) infection. Following experimental exposure to either DENV-1 or DENV-3, we sequenced the exomes of large phenotypic pools of mosquitoes that are either resistant or susceptible to each DENV type. Using variation in single-nucleotide polymorphism (SNP) frequencies among the pools, we computed empirical p values based on average gene scores adjusted for the differences in SNP counts, to identify genes associated with infection in a DENV type-specific manner. Among the top 5% most significant genes, 263 genes were significantly associated with resistance to both DENV-1 and DENV-3, 287 genes were only associated with DENV-1 resistance and 290 were only associated with DENV-3 resistance. The shared significant genes were enriched in genes with ATP binding activity and sulfur compound transmembrane transporter activity, whereas the genes uniquely associated with DENV-3 resistance were enriched in genes with zinc ion binding activity. Together, these results indicate that specific resistance to different DENV types relies on largely non-overlapping sets of genes in this Ae. aegypti population and pave the way for further mechanistic studies.


Asunto(s)
Aedes/genética , Virus del Dengue/clasificación , Resistencia a la Enfermedad , Secuenciación del Exoma/métodos , Proteínas de Insectos/genética , Aedes/virología , Animales , Células Cultivadas , Virus del Dengue/patogenicidad , Femenino , Gabón , Genotipo , Fenotipo , Polimorfismo de Nucleótido Simple , ARN Viral/genética , Especificidad de la Especie
11.
Emerg Microbes Infect ; 8(1): 1668-1678, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31735122

RESUMEN

Since its emergence in Yap Island in 2007, Zika virus (ZIKV) has affected all continents except Europe. Despite the hundreds of cases imported to European countries from ZIKV-infested regions, no local cases have been reported in localities where the ZIKV-competent mosquito Aedes albopictus is well established. Here we analysed the vector competence of European Aedes (aegypti and albopictus) mosquitoes to different genotypes of ZIKV. We demonstrate that Ae. albopictus from France was less susceptible to the Asian ZIKV than to the African ZIKV. Critically we show that effective crossing of anatomical barriers (midgut and salivary glands) after an infectious blood meal depends on a viral load threshold to trigger: (i) viral dissemination from the midgut to infect mosquito internal organs and (ii) viral transmission from the saliva to infect a vertebrate host. A viral load in body ≥4800 viral copies triggered dissemination and ≥12,000 viral copies set out transmission. Only 27.3% and 18.2% of Ae. albopictus Montpellier mosquitoes meet respectively these two criteria. Collectively, these compelling results stress the poor ability of Ae. albopictus to sustain a local transmission of ZIKV in Europe and provide a promising tool to evaluate the risk of ZIKV transmission in future outbreaks.


Asunto(s)
Aedes/fisiología , Mosquitos Vectores/fisiología , Infección por el Virus Zika/transmisión , Virus Zika/fisiología , Aedes/genética , Aedes/virología , Animales , Europa (Continente) , Femenino , Humanos , Mosquitos Vectores/genética , Mosquitos Vectores/virología , Carga Viral , Virus Zika/genética , Infección por el Virus Zika/virología
12.
Viruses ; 11(10)2019 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-31569736

RESUMEN

Mosquitoes are vectors of arboviruses affecting animal and human health. Arboviruses circulate primarily within an enzootic cycle and recurrent spillovers contribute to the emergence of human-adapted viruses able to initiate an urban cycle involving anthropophilic mosquitoes. The increasing volume of travel and trade offers multiple opportunities for arbovirus introduction in new regions. This scenario has been exemplified recently with the Zika pandemic. To incriminate a mosquito as vector of a pathogen, several criteria are required such as the detection of natural infections in mosquitoes. In this study, we used a high-throughput chip based on the BioMark™ Dynamic arrays system capable of detecting 64 arboviruses in a single experiment. A total of 17,958 mosquitoes collected in Zika-endemic/epidemic countries (Brazil, French Guiana, Guadeloupe, Suriname, Senegal, and Cambodia) were analyzed. Here we show that this new tool can detect endemic and epidemic viruses in different mosquito species in an epidemic context. Thus, this fast and low-cost method can be suggested as a novel epidemiological surveillance tool to identify circulating arboviruses.


Asunto(s)
Culicidae/virología , Enfermedades Endémicas , Epidemias , Ensayos Analíticos de Alto Rendimiento/métodos , Infección por el Virus Zika/epidemiología , Virus Zika/aislamiento & purificación , Animales , Infecciones por Arbovirus/transmisión , Infecciones por Arbovirus/virología , Arbovirus/genética , Arbovirus/aislamiento & purificación , Brasil , Cambodia , Vectores de Enfermedades , Monitoreo Epidemiológico , Femenino , Guyana Francesa , Guadalupe , Humanos , Masculino , Epidemiología Molecular , Mosquitos Vectores/virología , Proyectos Piloto , ARN Viral/aislamiento & purificación , Senegal , Suriname , Virus Zika/genética , Infección por el Virus Zika/transmisión
13.
Emerg Microbes Infect ; 7(1): 191, 2018 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-30482898

RESUMEN

The invasive species Aedes albopictus is present in 60% of Brazilian municipalities, including at the interfaces between urban settings and forests that are zoonotic arbovirus hotspots. We investigated Ae. albopictus colonization, adult dispersal and host feeding patterns in the anthropic-natural interface of three forested sites covering three biomes in Brazil in 2016. To evaluate whether an ecological overlap exists between Ae. albopictus and sylvatic yellow fever virus (YFV) in forests, we performed similar investigations in seven additional urban-forest interfaces where YFV circulated in 2017. We found Ae. albopictus in all forested sites. We detected eggs and adults up to 300 and 500 m into the forest, respectively, demonstrating that Ae. albopictus forest colonization and dispersal decrease with distance from the forest edge. Analysis of the host identity in blood-engorged females indicated that they fed mainly on humans and domestic mammals, suggesting rare contact with wildlife at the forest edge. Our results show that Ae. albopictus frequency declines as it penetrates into the forest and highlight its potential role as a bridge vector of zoonotic diseases at the edge of the Brazilian forests studied.


Asunto(s)
Aedes/fisiología , Conducta Alimentaria , Mosquitos Vectores/fisiología , Zoonosis/transmisión , Aedes/virología , Animales , Brasil/epidemiología , Perros , Ecosistema , Femenino , Bosques , Humanos , Mosquitos Vectores/virología , Óvulo , Ratas , Remodelación Urbana , Virus de la Fiebre Amarilla , Zoonosis/epidemiología , Zoonosis/virología
14.
PLoS Pathog ; 14(7): e1007187, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-30005085

RESUMEN

The kinetics of arthropod-borne virus (arbovirus) transmission by their vectors have long been recognized as a powerful determinant of arbovirus epidemiology. The time interval between virus acquisition and transmission by the vector, termed extrinsic incubation period (EIP), combines with vector mortality rate and vector competence to determine the proportion of infected vectors that eventually become infectious. However, the dynamic nature of this process, and the amount of natural variation in transmission kinetics among arbovirus strains, are poorly documented empirically and are rarely considered in epidemiological models. Here, we combine newly generated empirical measurements in vivo and outbreak simulations in silico to assess the epidemiological significance of genetic variation in dengue virus (DENV) transmission kinetics by Aedes aegypti mosquitoes. We found significant variation in the dynamics of systemic mosquito infection, a proxy for EIP, among eight field-derived DENV isolates representing the worldwide diversity of recently circulating type 1 strains. Using a stochastic agent-based model to compute time-dependent individual transmission probabilities, we predict that the observed variation in systemic mosquito infection kinetics may drive significant differences in the probability of dengue outbreak and the number of human infections. Our results demonstrate that infection dynamics in mosquitoes vary among wild-type DENV isolates and that this variation potentially affects the risk and magnitude of dengue outbreaks. Our quantitative assessment of DENV genetic variation in transmission kinetics contributes to improve our understanding of heterogeneities in arbovirus epidemiological dynamics.


Asunto(s)
Culicidae/virología , Virus del Dengue/genética , Dengue/genética , Dengue/transmisión , Mosquitos Vectores/virología , Animales , Variación Genética
15.
Parasit Vectors ; 11(1): 207, 2018 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-29587819

RESUMEN

BACKGROUND: Host-associated microbes, collectively known as the microbiota, play an important role in the biology of multicellular organisms. In mosquito vectors of human pathogens, the gut bacterial microbiota influences vectorial capacity and has become the subject of intense study. In laboratory studies of vector biology, genetic effects are often inferred from differences between geographically and genetically diverse colonies of mosquitoes that are reared in the same insectary. It is unclear, however, to what extent genetic effects can be confounded by uncontrolled differences in the microbiota composition among mosquito colonies. To address this question, we used 16S metagenomics to compare the midgut bacterial microbiome of six laboratory colonies of Aedes aegypti recently derived from wild populations representing the geographical range and genetic diversity of the species. RESULTS: We found that the diversity, abundance, and community structure of the midgut bacterial microbiome was remarkably similar among the six different colonies of Ae. aegypti, regardless of their geographical origin. We also confirmed the relatively low complexity of bacterial communities inhabiting the mosquito midgut. CONCLUSIONS: Our finding that geographically diverse colonies of Ae. aegypti reared in the same insectary harbor a similar gut bacterial microbiome supports the conclusion that the gut microbiota of adult mosquitoes is environmentally determined regardless of the host genotype. Thus, uncontrolled differences in microbiota composition are unlikely to represent a significant confounding factor in genetic studies of vector biology.


Asunto(s)
Aedes/microbiología , Bacterias/clasificación , Bacterias/genética , Microbioma Gastrointestinal , Animales , Análisis por Conglomerados , ADN Ribosómico/química , ADN Ribosómico/genética , Tracto Gastrointestinal/microbiología , Metagenómica , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
16.
Sci Adv ; 3(8): e1700585, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28835919

RESUMEN

Conditions experienced during larval development of holometabolous insects can affect adult traits, but whether differences in the bacterial communities of larval development sites contribute to variation in the ability of insect vectors to transmit human pathogens is unknown. We addressed this question in the mosquito Aedes aegypti, a major arbovirus vector breeding in both sylvatic and domestic habitats in Sub-Saharan Africa. Targeted metagenomics revealed differing bacterial communities in the water of natural breeding sites in Gabon. Experimental exposure to different native bacterial isolates during larval development resulted in significant differences in pupation rate and adult body size but not life span. Larval exposure to an Enterobacteriaceae isolate resulted in decreased antibacterial activity in adult hemolymph and reduced dengue virus dissemination titer. Together, these data provide the proof of concept that larval exposure to different bacteria can drive variation in adult traits underlying vectorial capacity. Our study establishes a functional link between larval ecology, environmental microbes, and adult phenotypic variation in a holometabolous insect vector.


Asunto(s)
Bacterias , Variación Biológica Poblacional , Microbiología Ambiental , Mosquitos Vectores/crecimiento & desarrollo , Mosquitos Vectores/microbiología , Carácter Cuantitativo Heredable , Animales , Antibiosis , Cruzamiento , Dengue/transmisión , Ecosistema , Ambiente , Microbioma Gastrointestinal , Interacciones Huésped-Patógeno , Humanos , Larva , Estadios del Ciclo de Vida , Metagenoma , Metagenómica , Microbiota , Mosquitos Vectores/virología
17.
Sci Rep ; 7(1): 250, 2017 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-28325914

RESUMEN

Caves house pathogenic microorganisms, some of which are transmitted by blood-sucking arthropods. In Africa, previous studies identified mosquitoes, sand flies and biting midges as the main potential vectors of cave-dwelling pathogens. However, to understand their involvement in pathogen spillover, it is crucial to characterize their diversity, community composition and dynamics. Using CDC light traps, we collected hematophagous Diptera in six caves of Gabon during one-shot or longitudinal sampling, and investigated their species diversity and dynamics in relation with external rainfall. Overall, we identified 68 species of mosquitoes, sand flies and biting midges, including 45 new records for Gabon. The dominant species were: Uranotaenia nigromaculata, Anopheles smithii s.l., Culex. rima group and Culex quasiguiarti for mosquitoes, Spelaeophlebotomus gigas and Spelaeomyia emilii for sand flies and the Culicoides trifasciellus group and Culicoides fulvithorax for biting midges. The survey revealed that species assemblages were cave-specific and included mainly troglophilous and trogloxenous species. Both diversity and abundance varied according to the cave and sampling time, and were significantly associated with rainfall. These associations were modulated by the cave specific environmental conditions. Moreover, the presence of trogloxenous and troglophilous species could be of high significance for pathogen transfers between cave and epigeous hosts, including humans.


Asunto(s)
Cuevas , Ceratopogonidae/crecimiento & desarrollo , Culicidae/crecimiento & desarrollo , Insectos Vectores/clasificación , Insectos Vectores/crecimiento & desarrollo , Psychodidae/crecimiento & desarrollo , Animales , Biodiversidad , Ceratopogonidae/clasificación , Culicidae/clasificación , Dípteros , Gabón , Estudios Longitudinales , Psychodidae/clasificación
18.
Sci Rep ; 6: 24885, 2016 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-27117953

RESUMEN

Successful transmission of a vector-borne pathogen relies on a complex life cycle in the arthropod vector that requires initial infection of the digestive tract followed by systemic viral dissemination. The time interval between acquisition and subsequent transmission of the pathogen, called the extrinsic incubation period, is one of the most influential parameters of vector-borne pathogen transmission. However, the dynamic nature of this process is often ignored because vector competence assays are sacrificial and rely on end-point measurements. Here, we report that individual Aedes aegypti mosquitoes release large amounts of dengue virus (DENV) RNA in their excreta that can be non-sacrificially detected over time following oral virus exposure. Further, we demonstrate that detection of DENV RNA in excreta from individual mosquitoes is correlated to systemic viral dissemination with high specificity (0.9-1) albeit moderate sensitivity (0.64-0.89). Finally, we illustrate the potential of our finding to detect biological differences in the dynamics of DENV dissemination in a proof-of-concept experiment. Individual measurements of the time required for systemic viral dissemination, a prerequisite for transmission, will be valuable to monitor the dynamics of DENV vector competence, to carry out quantitative genetics studies, and to evaluate the risk of DENV transmission in field settings.


Asunto(s)
Aedes/virología , Virus del Dengue/genética , Entomología/métodos , Mosquitos Vectores , ARN Viral/análisis , Esparcimiento de Virus , Animales , Sensibilidad y Especificidad
19.
Viruses ; 7(7): 3625-46, 2015 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-26198241

RESUMEN

Viruses rely on widespread genetic variation and large population size for adaptation. Large DNA virus populations are thought to harbor little variation though natural populations may be polymorphic. To measure the genetic variation present in a dsDNA virus population, we deep sequenced a natural strain of the baculovirus Autographa californica multiple nucleopolyhedrovirus. With 124,221X average genome coverage of our 133,926 bp long consensus, we could detect low frequency mutations (0.025%). K-means clustering was used to classify the mutations in four categories according to their frequency in the population. We found 60 high frequency non-synonymous mutations under balancing selection distributed in all functional classes. These mutants could alter viral adaptation dynamics, either through competitive or synergistic processes. Lastly, we developed a technique for the delimitation of large deletions in next generation sequencing data. We found that large deletions occur along the entire viral genome, with hotspots located in homologous repeat regions (hrs). Present in 25.4% of the genomes, these deletion mutants presumably require functional complementation to complete their infection cycle. They might thus have a large impact on the fitness of the baculovirus population. Altogether, we found a wide breadth of genomic variation in the baculovirus population, suggesting it has high adaptive potential.


Asunto(s)
Variación Genética , Genoma Viral , Nucleopoliedrovirus/genética , Animales , Secuencia de Bases , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Datos de Secuencia Molecular , Mariposas Nocturnas/virología , Mutación , Nucleopoliedrovirus/aislamiento & purificación , Polimorfismo de Nucleótido Simple , Proteínas Virales/genética
20.
Infect Genet Evol ; 28: 628-34, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24840150

RESUMEN

The genus Anopheles includes mosquito vectors of human malaria and arboviruses. In sub-Saharan Africa, the anopheline fauna is rich of nearly 150 species, few of which are anthropophilic and capable of transmitting pathogens to humans. Some of the remaining species are found in forests far from human environments and are vectors of wildlife pathogens. The diversity and the biology of these species have yet to be fully described. As a contribution to furthering knowledge of sylvan Anophelinae, using morphological and molecular tools we describe a new Anopheles species collected in Gabon (Central Africa), which we have named Anopheles gabonensis n. sp. We also molecularly screened this species to detect infections by Plasmodium parasites. The results showed the species to have been infected by Plasmodium vinckei, a rodent parasite. We discuss the role of An. gabonensis n. sp. in the transmission of P. vinckei in the rainforest areas of Central Africa and its potential to transfer pathogens to humans.


Asunto(s)
Anopheles/clasificación , Anopheles/parasitología , Insectos Vectores , Malaria/transmisión , Plasmodium , Animales , Anopheles/anatomía & histología , Anopheles/genética , ADN Mitocondrial/genética , Femenino , Gabón/epidemiología , Humanos , Malaria/epidemiología , Masculino , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...